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1. Overview
AFOSR has posed three questions regarding intelligent real-time

problem solving (IRTPS):

(a) What are the important terms and issues in IRTPS?

(b) What characteristics should appear in a community testbed
application?

(c) What experimental methodology should guide research in this
area?

It is easier to contrast an IRTPS system with other frameworks than
to define it. IRTPS systems contrast on the one hand with traditional real-
time systems, and on the other hand with classical Al planning systems.
With the former they share properties such as responsiveness and
timeliness. With the latter they share concepts such as process
representation, prediction, and reasoning about resource limitations.

To actually define IRTPS systems we need to give precise meaning to
the notions mentioned above, and to others such as reactivity, robustness,
flexibility and uncertainty. In section 2 we propose a neutral setting in
which these terms can be defined, which is compatible with the
framework proposed in another workshop paper, "Notes on Evaluating
Methodologies for IRTPS Systems," by Stan Rosenschein, Barbara Hayes-
Roth, and Lee Erman. In section 3 we introduce several intuitive notions
regarding IRTPS requirements and define them in terms of the proposed
framework. In section 4 we briefly outline our particular perspective on
IRTPS systems, that of real-time intelligent agents (on which we say
more in two attached documents). In section 5 we give recom,-iendations
regarding the testbed environment. Our recommendations regarding
experimental methodology appear in the above-mentioned paper and are
not repeated here. In section 6 we offer a particular recommendation for
structuring AFOSR's IRTPS Research Program.

2. A Computational Model for IRTPS Systems

This section discusses how the modeling of a computational device and its
environment, and draws on an analogy with control theory.
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Franz Reuleaux' book of 1876, The Kinematics of Machinery, is
considered to have laid the foundations to modern kinematics. His insight
was the following. In order to reason about the possible motions of
physical objects in space, both rotation and translation, one should focus
not on the single object but on pairs of adjacent objects, the kinematic
pair. The fundamentol object of investigation, proposed Reuleaux, was the
interaction between physical objects, the joint. The basic question, given
a joint between two objects in a specific geometric configuration, is
what translational and rotational freedom they allow each other.
Reuleaux was able to give a general answer to the question (which since
then has been refined and extended).

A similar view of computation is possible, which focuses on the
interaction of a machine with its environment. Furthermore, as in the
case of kinematics, one need not speak of a machine as one sort of object
and its environment as another; instead they can be viewed symmetrically
as interacting machines, the informatic-pair. A theory of any sort of
computation now becomes a theory about the interaction between
machines.

A few simple definitions are probably in order at this point. We first
define an automaton to consist of several inputs and outputs, an internal
state, and a transition function. The transition function is the only
nontrivial aspect of the definition: it specifies that the state and output
of the machine at each time t are determined by its state at time t-
deltaS, and its input at time t-deltal. In the following we assume DT, a
set of nonzero durations. In the context of an IRTPS system, we take DT
to be the positive real numbers.

Definition 1. An automaton (also called a machine) is a tuple
[S,I,O,F, deltas, deltal]

where S is a set of states, /is a (possibly empty) set of n-ary tuples of
input values (for some fixed n), 0 is a set of m-ary tuples of output values
(for some fixed m), and F is a transition function F: S X I --> S X 0, and
deltas, deltal are respectively the state and input lags.

Thus, if the machine's state at time t-deltaS is S 1 and its input at
time t-deltal is il and furthermore F(sl,il)=(s2,o2), then at time t the
machine will be in state s2 and have output 02.

With the exception of the temporal aspect, this is a standard construct in
system-modeling disciplines. It is a very general model. Although we
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will restrict the discussion in this manuscript to finite and deterministic
automata, we allow in general infinite sets of internal states and
stochastic transition functions.

In general we cannot speak of the behavior of the automaton, since
that depends on the input. The one case in which we can do it is when the
set of inputs is empty.

Definition 2. An automaton with an empty set of inputs is called closed;
otherwise it is open.

For a closed automaton we can assume a unary transition function,
one that depends only on its internal state. Given an initial history of the
closed automaton's internal states and outputs, we can define the trace
[or run or behavior] of the automaton at all future times in the obvious
way.

The systems we build, whether they are low-level process
controllers or high-level planners, are open automata; we can model their
behavior only in conjunction with their environment, which, as was
mentioned, will be viewed as simply another automaton.

We first define what it means to wire together a collection of
automata. Intuitively, when we wire such a collection we connect some
inputs to some outputs: an input is connected only to an output of another
machine, not necessarily all inputs and outputs are connected, and at most
one output is connected to each input and vice versa. (It may seem natural
to allow connecting more than one input to a single output. We disallow it
because it makes for cleaner semantics of composite machines below.
However, we allow a machine to have several outputs that always carry
the same value.)

Such a wired set of automata induces a new automaton. Intuitively,
the new states are the cross-product of the old states, the new inputs are
the union of the old ones that have not been connected to an output, and
the new outputs are the union of the old outputs that have not been
connected to an input. The only nontrivial aspect is the definition of the
new transition function. The subtlety is in the timing. Suppose we
manage to catch the collection of automata at a moment when all of them
just switched to a new state, which by definition is a new state for the
composite machine. When is the next state-change of the composite
machine? Intuitively, the composite machine will undergo state
transitions at several times, corresponding to the different delays of the
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individual machines. However, by definition any automaton has a single
pair of delays associated with it. Indeed, we will define the composite
automaton to change state as soon as any of the individual machines do. In
other words, the delay time of the composite automaton is the minimum
among the delay times of all individual automata. However, in the new
state of the composite automaton each individual automaton will switch
to a new "intermediate" state, which will record the remaining delay time
of that individual machine.

Definition 3. (Formal definition is omitted.)

One specific kind of wiring is of particular importance, and that is
the wiring of two machines into an informatic pair.

Definition 4. An informatic pair is a pair of automata wired together so
that every input of one automaton is wired to an output of the other
machine, and vice versa.

By definition, therefore, an informatic pair induces a closed
automaton, whose trace is well-defined.

3. Formal Definitions of Intuitive IRTPS Concepts

We propose the model outlined in the previous section as one in which
to couch discussion of IRTPS issues. Specifically, we propose viewing
the IRTPS system as a machine wired to the environment. The various
considerations that have been raised in the past can be given precise
meanings in terms of the class of environment-machines being considered,
their internal structure (which the "intelligent" system will be able to
exploit), their wiring to and from the IRTPS (assumptions about input and
output), and the internal structure of the IRTPS itself.

We do not propose a comprehensive list of criteria for IRTPS systems,
only the setting in which to define them. We hope to reach a concensus of
sorts on the criteria during the workshop itself. The most general
formulation of them presumably is a some maximization of a utility
function over time. Such a requirement would have to specify the class of
environments being considered, and the utility function. This is
sufficiently general that it's probably both correct and useless (though
others may wish to correct us). What we will do instead is pick a few
keywords that have been used in the past, and attempt to give them a
more-or-less precise meaning in our model. In most cases, these
definitions fall short of fully capturing the intuitions behind the terms;
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we hope to improve these definitions as well as formulate new ones for
other important terms at the workshop. Nonetheless, even these partial
definitions contribute to our understanding of these terms by showing
that some of them are neutral specifications of the performance required
of an IRTPS system, while others are specifications of the internal
workings of a particular IRTPS system architecture. (See related
discussion in the workshop paper "Notes on Evaluating Methodologies ... ")

Timeliness

Intuitively we require that an IRTPS system not only produce correct
or useful output, but to do so at the right time. This requirement
translates in our framework to a restriction on delays allowable between
certain outputs of the environment-machine and its reaching certain other
states later. In the simple form the restrictions are absolute, and in the
more sophisticated form they are stochastic, allowing occasional harmful
long delays in exchange for extra speed at most other times. (From here on
we'll talk only of absolute requirements, understanding that the
definitions can be extended to the statistical case.)

Some of the other notions below are mentioned in service of

timeliness.

Internal Clock

Intuitively, this is a requirement that the IRTPS have a notion of the
passage of time in the real world. In our framework this translates to a
requirement that some component machine of the IRTPS change at a
constant rate.

Recency

The IRTPS should not fall behind real time to handle a backlog of
inputs and it should not operate on seriously out of date inputs--unless it
has explicitly decided to do so. In terms of our framework, the probability
of an environmental state change influencing an IRTPS system state
change should decrease rapidly to 0 over time. If the IRTPS sytem has
internal structure, then the probability that state changes in its
components will affect one another should decrease rapidly to 0 over
time.

Guaranteed Cycle Time



7

Intuitively, we require that the IRTPS never get "lost in thought" for

an unbounded period. In our framework this translates to upper bounds on
the state and input delays (deltaS and deltal) of the IRTPS-machine.

Unpredictability

Intuitively, there is a significant number of environment state and
output changes that the IRTPS system cannot predict. In terms of the
framework, this means the rate of environmental state transitions varies
widely.

Asynchrony

Given this unpredictability, an IRTPS system must receive inputs when the
environment produces them and not on any arbitrary schedule. To make
sense of this in terms of our framework, we need to model the IRTPS
system as a wired set of sub-automata, including some for input
reception. Then, the rate of state changes in input reception components
must be independent of the rate of state changes in other components.

Data Glut

Intuitively, the IRTPS system will be overwhelmed with data, and
will be able to act on only a small part of it. In our framework means that
the wiring between the IRTPS system and the environment be dense, with
many more input changes to the IRTPS machine than state changes at any
given period.

Selectivity, Intelligent Data Filtering

Intuitively, in order to cope with this data glut, the IRTPS cleverly
chooses which inputs to process. Defining intelligent data filtering in
terms of our framework will depend upon the internal structuring of the
machine as a set of wired sub-automata and specification of dependencies
among their state changes.

Uncertainty, Noise

Intuitively, the data and world model available to the IRTPS system
will be partial, approximate, and sometimes plain wrong. In our
framework this translates into imperfect correlations between inputs to
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and states of the IRTPS, on the one hand, and states of the environment, on
the other hand.

Modeling, Prediction, Foresight

Under some architectures, the IRTPS system will have a model of the
enviroment, which it can use to predict the future and thus guide its
actions. In our framework this is captured by a requirement that some
component of the IRTPS system have an internal structure that stands in
correlation to the internal structure of the environment. Furthermore, this
component must influence state transitions of the IRTPS.

Robustness, Graceful Degradation

Intuitively, as enviroments get more demanding, the performance of
the IRTPS system should deteriorate only gradually. To define this concept
in our framework, we would have to define measurements on
demandingness of the environment and quality of performance of the
IRTPS. For example, demandingness of the environment might be measured
in terms of number of state variables or rate of state changes. Quality of
performance would depend upon application-specific utility functions.
Then graceful degradation implies that small changes in demandingness
should produce small changes in quality.

4. Perspective on Real-Time Intelligent Agents

We have attempted so far to use as neutral a language as possible,
free from terms for which different researchers have conflicting
intuitions, or from presuppositions about possible solutions. We now
deviate from this restriction and talk briefly about our perspective on
real-time intelligent agents.

The term agents is used so much nowadays that it has become
meaningless without reference to some particular notion of agenthood.
What we mean by this term is a system that is embedded in a temporal
framework, and about which one can talk in terms of its having knowledge
and beliefs, desires and goals, reasoning capabilities, resource
limitations, and similar other mentalistic-sounding terms.

We see several related advatages to dragging this notion of
agenthood into the context of IRTPS. Among other things, it allows us to:
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* ascribe to the system knowledge of the environment and the related

abilities to interpret past events and to predict and plan for future
events;

* talk of the goal the system has at any point in time, and the

knowledge it needs in order to achieve the goal;

* design and explain the IRTPS as making tradeoffs among different

goals, having knowledge of its reasoning resources, and making decisions
such as whether to spend time incorporating new data into its world
model.

In general, the agent level gives formal meaning to the "I" in IRTPS.
If in addition we view the environment as containing other agents we have
additional benefits. For example, we can:

* talk of the IRTPS having knowledge of the goals, knowledge and

capabilities of these other agents;

* specify the class of environment in which the IRTPS is to function

at least partially in terms of what agents it contains, whether they are
hostile or friendly, what their capabilities are, etc.

Thus, "agent" is a useful concept to have, both in specifying the problem
and (especially) in specifying architectures.

In order to make engineering sense of this concept, however, we
must do at least the following:

1. Define the notions we associate with agents, such as knowledge and
goals, including their temporal dimension. For example, what does it mean
for a process controller to "know" that it "needs" to lower the pressure in
the chamber within five seconds? What does it mean for the agent to
"believe" that doing so will prevent an explosion?

2. Explain the connection between these high-level notions and low-level
behaviors like sensing a signal or actuating an effector.

3. Explain the special constraints placed on agents by real-time
environments.

We have both made some progress in this direction, which we describe
briefly in two attachments to this paper. "Agent-Oriented Programming"
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outlines a general approach to treating information systems as formal
agents, and some related work that is taking place in Stanford's Robotics
Lab. "Research on Adaptive Intelligent Systems" outlines architectural
work and related applications being developed in Stanford's Knowledge
System's Laboratory.

5. Recommendations regarding Testbed

5.1 Desirable Features of Testbed Environments

Testbeds should include simulated IRTPS environments both for
development purposes and for controlled experiments. For verification, it
will be necessary to test at least some scenarios in real environments,
for example involving interface to a real vision module or to a real
process controller.

Testbed simulations should provide appropriate sensors and effectors
for use by application systems. They should be factorable--provide "black
box" solutions to component tasks--so that researchers can choose to
address only those parts of the application problem that interest them.
Simulations should be tunable--permit constant factor speed
modulations--so that researchers can ignore conventional issues of
efficiency and concentrate on more fundamental research issues. Finally,
simulations should be instrumented--equipped with meters on important
performance variables--so that researchers can analyze the different
aspects of performance of their application systems.

Testbeds also should provide a suite of modular application scenarios.
Each scenario should be issue-oriented, stressing a particular aspect of
intelligent real-time problem solving, such as hard real-time constraints,
conflicting sensor data, need for synchronization, etc. Each scenario
should include a simulation controller to "play" the scenario and an
associated knowledge base (in some neutral representation scheme) for
use by application systems in handling the scenario. There should be
several variations on each scenario. Base scenarios are for use by
researchers in developing aspects of their application system to address
the scenario issue. Standard test scenarios should exhibit the same issue-
related phenomena as the base scenario, but differ from it on incidental
features. For example, a standard test scenario for hard real-time
constraints might different from the base scenario on which event carries
the constraint, when it occurs in the scenario, what other events occur in
the scenario, etc. Standard test scenarios will allow researchers to
determine whether they have developed problem-independent approaches.
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Stress test scenarios also should correspond to the development
scenarios, but they should exhibit extreme cases of the issue-related
phenomena. For example, a stress test scenario for hard real-time
constraints might impose much shorter time constraints or introduce
many more competing events. These scenarios will allow researchers to
determine how their approaches degrade under extreme conditions. These
different types of scenarios merely illustrate the kinds of scenarios we
think would benefit research in an IRTPS testbed.

5.2 Desirable Features of Testbed Domains

An IRTPS testbed domain should exhibit the general task
characteristics identified in section 3. To take a few examples, we are
interested in domains in which:

* it is not feasible to exhaustively sense interesting features of the

environment;

* situation assessment requires interpretion of sensed data and

fusion of data from multiple sensors;

* it is not feasible to enumerate every condition the IRTPS will

encounter;

* the environment is orderly enough to permit probabilistic

prediction of future events;

* coordinated courses of action are sometimes superior to

sequences of locally determined actions;

* events vary in the deadlines associated with effective responses;

* multiple goals vary in importance;

* a broad range of relevant knowledge is available;

* explanations of phenomena and rationales for behavior are

required.

Because different application domains may differentially emphasize
particular subsets of these features, it would be preferable to identify at
least two or three testbed applications to avoid artificially skewing
research activities toward an arbitrary subset of relevant issues.
Moreover, we do not believe that an IRTPS testbed application should
replace other applications being studied in the research community, but
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rather that a diversity of applications promotes a more complete
exploration of the space of relevant research issues and solutions.

6. Recommendations for Structuring the IRTPS Research
Program

Three programmatic objectives motivate our remarks on structuring
the IRTPS Research Program:

* to stimulate new IRTPS research by providing environments in

which new investigators could begin to study IRTPS issues without the
overhead entailed in developing one's own application;

* to facilitate interactions and exchange of results in the IRTPS

community by providing a communications medium in which investigators
could demonstrate approaches originally developed in diverse application
domains that are unfamiliar to their colleagues;

* to permit a more scientific approach to IRTPS research by providing

a controlled environment for comparative evaluation of competing
approaches.

As discussed at the first AFOSR workshop on IRTPS, development of
a high-quality and easily accessible testbed application that meets all of
the requirements would be an expensive and time-consuming task. If we
aim for a diversity of testbed applications, as recommended in this paper,
the cost rises proportionately. At the same time, this effort would be
redundant with efforts already underway by individual researchers to
develop a variety of interesting IRTPS testbed applications for their own
work, for example:

* Hayes-Roth's simulation of the intensive care environment;

* Hayes-Roth's simulation of GaAs crystal growth by MBE;

* Cohen's simulation of fire-fighting in Yellowstone Park;

* D'Ambrosio's simulation of wilderness exploration;

* Lesser's simulation of vehicle fleet maneuvers;

* SRI's Flakey the robot;
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* Latombe's Gofer robots.

Given AFOSR's budget and timetable for this research program,
developing a new community testbed application does not seem to be the
best use of scarce resources at this time.

As an alternative, we recommend that AFOSR use its IRTPS Research
Program to encourage empirical research on testbed applications
currently being developed in the community, with particular interest given
to two kinds of proposals:

(a) Proposals that offer, in addition to new empirical research, to
deliver a testbed version of their application domain suitable for use by
other members of the community;

(b) Proposals that offer to comparatively evaluate alternative
architectures through controlled experiments within their application
domain.

This structuring of the program would address all three progammatic
objectives:

* Testbed applications obtained under the first kind of proposal would

stimulate new IRTPS research by providing environments in which new
investigators could begin to study IRTPS issues.

* These testbed applications would facilitate interactions and
exchange of results in the IRTPS community by providing a
communications medium in which investigators could demonstrate
different approaches.

* Research conducted under the second kind of proposal would

specifically include comparative evaluation of competing approaches in a
controlled environment.

This structuring of the program would offer two additional advantages:

* It would offer individual researchers more latitude in choosing an

application domain for their work.

* It would guarantee exploration of a diverse set of application
domains and a broad range of IRTPS issues within the research community.
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Abstract

We propose a framework for modeling intelligent real-time problem-
solving systems embedded in an environment. Within this framework,
measurements may be defined on the system and on the environment,
and particular measurements may be designated for judging the per-
formance of the system. Although this framework supports analyti-
cal evaluation, we concentrate on its use for experimental evaluation,
especially for evaluating and comparing system architectures. This
framework also provides a basis for formalizing various requirements
terms, such as "reactivity" and "graceful degradation".

1 Introduction

Intelligent real-time problem-solving systems (IRTPSs) are embedded com-
puter systems that interact with their environments in a continuous fashion,
sensing asynchronous events and acting in ways designed to satisfy certain
goals. Instances of such systems include intelligent robots, factory control
systems, avionic systems, and medical monitoring systems. Many software

*This work wan supported by AFOSR Contract F49620-89-C-0129 and AFOSR Con-
tract F49620-89-C-0117.



boundary should be placed so as to distinguish between a proposed archi-
tecture and the environment in which it is claimed to be effective. Then we
can evaluate the relationships between properties of the architecture as man-
ifested in S and properties of E. In particular, note that the S - E boundary
need not correspond to the boundary between a "complete agent" and its en-
vironment, but may correspond to the boundary around any "partial agent"
of interest. For example, to evaluate a complete agent architecture, the S - E
boundary should encompass all perception, reasoning, and action elements.
But to evaluate a perception architecture, the S - E boundary should more
tightly encompass only perceptual elements, with any reasoning or action
elements treated as part of the environment. We might often choose to treat
particular sensors and effectors as elements of E. As discussed below, for a
given placement of the S - E boundary, we will be attempting to attribute
properties in the environment to the behavior of particular IRTPSs and, by
inference, to their underlying architectures.

3 Measurement and Utility

In order to describe the effectiveness of an IRTPS architecture in controlling
aspects of the environment, it is necessary to identify measurements that
can be made and how those measurements will be interpreted to determine
utility.

A measurement is any function of state values. Measurements can be
made within a state or over sets of states or runs.

Under the above model of embedded systems, for a given S - E boundary,
measurements on E are distinguished from measurements on S. Measure-
ments on E describe the dynamic properties of the environment, some of
which are determined by processes internal to the environment and others of
which are influenced by the behavior of S in E. The latter sorts of measure-
ments are distinguished and used to assess the effectiveness of S in determin-
ing properties of E under various conditions. These assessments may be in
absolute terms or relative to alternative Ss. Measurements on S describe the
dynamic properties of the IRTPS, some of which are determined by processes
internal to it and others of which are determined by the impact of E on S.
These measurements are used help to explain the performance of S and its
(in)effectiveness in determining properties of E in terms of its underlying ar-
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The choice of utility measures may be specific to the S - E boundary

placement. They certainly will be specific to the purpose of the evaluation.
To describe system Si(u) parametrically with respect to various mea-

surements of utility against fixed (parametric) environment E(v) amounts to
characterizing the expected utility of Sj(u) as a function of (u,v), using a

variety of techniques, some of which are described below. Similar methods

can be used to compare two similarly parametrized systems, S1 (u) and S2(u),
fixed (parametric) environment E(v).

4 Evaluation

In principle, there are many ways a proposed IRTPS design might be eval-
uated. The methods fall into two general categories: analytical and ezperi-
mental. Because each of these methods has its advantages and drawbacks, a

thorough evaluation often requires both. In the first section below, we briefly

mention some of the advantages and disadvantages of analytical methods.
The following section treats experimental methods, which are the focus of
this document, in more detail.

4.1 Analytical Evaluation Methods

One method of characterizing system performance is by establishing certain

of its properties through analytical techniques. These techniques draw on

relevant mathematical methods and amount to proving theorems.

The main advantage of the analytical approach is the ability to establish
with mathematical certainty very general or universal statements about en-

tire classes of behaviors and phenomena far too numerous to enumerate in

explicit detail. For instance, it might be shown mathematically that a cer-

tain undesired situation can never arise given the nature of the environment

and the control system, or that when a triggering event occurs a response is

always generated within a certain time period. Results of this kind can be
very powerful and can give us great confidence in the systems we design.

Analytical approaches are not without their drawbacks, however. The

primary drawback is that the complexity of the systems being modeled gives

rise to intractable mathematical models that often resist analysis. In an

attempt to render the models tractable, simplifications are often made which

5



of their performance on a small number of environmental scenarios.
Drawing general conclusions from a small number of observed instances

is a risky business. A given S realizes an abstract architecture, A, in a
particular implementation, I, and instantiates it for a body of knowledge, K.

Architectures themselves are complex artifacts, differing in both theoretically
interesting variables (e.g., knowledge representation, inference procedures,
control mechanism) and incidental variables (e.g., implementation details,
execution environment). Similarly, different environmental scenarios differ in
a great many variables (e.g., frequency of important events, distribution of
deadlines, amount of interpretation required, predictability of events). As a
consequence, any given observation of the performance of a given architecture
on a given environmental scenario is likely to reflect the combined effects of
many such variables.

Controlled experimentation is an attempt..o reduce as much as possible
the incidental variability in a set of observations in order to: (a) obtain
a reliable account of particular effects of a particular set of theoretically
interesting variables; and (b) rigorously bound the class of situations in which
those effects can be expected to obtain. In a controlled experiment, one or
more "independent variables" are manipulated and their distinctive effects on
one or more "dependent" variables are measured. In the present context, we
will typically be manipulating independent variables representing a proposed
architecture within S and measuring dependent variables representing the
performance of interest within E. Other variables, including both S and E
variables, are "controlled" to avoid confounding their effects with those of
the independent variables. We also will often evaluate the performance of a
fixed S as a function of various E scenarios; for this, we keep S fixed and the
dependent and independent variables are in E.

Some controlled variables are simply held constant, while others are sys-
tematically manipulated or randomly sampled to provide a basis for gener-
alization. In the domain of IRTPS systems, there are a variety of important
variables we may wish to control:

S variables:

* sensors

9 effectors

* knowledge available
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might draw certain conclusions with high confidence, for example: (a) for
critical events in all conditions, control mechanism A produces a higher rate
of correct answers within deadline than control mechanism B (97% vs. 75%);
(b) for non-critical events in all conditions, control mechanism B produces
a higher rate of correct answers within deadline than control mechanism A
(75% vs. 65%); (c) as the frequency of events increases (1-30 events per unit
time), control mechanism A's performance on critical events degrades slowly
(100-95%), while its performance on non-critical events declines dramati-
cally 90-.40%); and (d) as the frequency of events increases, control mecha-
nism B's performance declines significantly for both critical and non-critical
events (953-50% in both cases). Given a particular set of utility functions-
in particular, valuing critical events more highly than non-critical events-we
might conclude from these results that control mechanism A is "better" than
control mechanism B because it provides "better" performance overall and
a "better" degradation profile.

Control of variables determines what kinds of conclusions an experiment
can support. For example, observing the performance of St and S2 on a
single scenario, O, in a single environment, El, permits only conclusions
about the comparative effectiveness of S, and 52 on scenario O1. Observing
performance on a representative sample of scenarios in El permits conclu-
sions about the comparative effectiveness of S, and S2 in environment El.
Observing performance on a sample of scenarios in a sample of environments
from class E permits conclusions about the comparative effectiveness of S,
and S2 in environment class E.

Of course some variables are quite difficult to control, and these necessar-
ily limit the conclusions that can be drawn from experiments. In particular,
it is difficult to separate and control variables that distinguish among the ar-
chitecture, implementation, and knowledge of a given system S. Nonetheless,
if we wish to draw strong conclusions about the utility of an architecture,

we must control these potentially confounding variables. In many cases, our
experiments may permit conclusions only about the level of performance of
an S or the relative performances of alternative Ss. It may require ana-
lytical methods-or be infeasible-to determine whether an S's performance
advantage is due to its architecture, implementation, or knowledge.
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other desirable E-Requirements as well). Notice, however, that other testable
claims are possible, for example that a non-reactive S (one whose architec-
ture is something different from the above-mentioned sense-act loop) also
produces E-Reactivity (and perhaps some other desirable E-Requirements
as well). The purpose of experiments is to evaluate such claims.

Accordingly, the model of embedded systems suggests that efforts to spec-
ify requirements for IRTPSs clearly distinguish between S-Requirements and
E-Requirements. In particular, E-Requirements should be defined strictly
in terms of measurements on E variables, while S-Requirements should be
defined in terms of measurements on S variables. For example, S-Reactivity
might be defined as a bound on the computation performed between sensing
and acting. E-Reactivity might be defined as a bound on the latency be-
tween occurrence of an important "problem" event and the occurrence of an
appropriate external "correction" event. Moreover, a given experiment re-
quires agreement among participants on the E-Requirements against which
alternative S-Requirements will be evaluated.

5.2 Implications for an Experimental Testbed

As discussed throughout this document, IRTPSs are complex artifacts em-
bedded in complex environments. Experiments that allow generalization of
conclusions beyond the immediate experimental conditions require control of
many variables in both the S and the E. In addition, experimentation on S's
of differing scopes requires flexibility in the placement of the S - E boundary.
To support these kinds of experimentation requires a sophisticated testbed.

For example, a basic testbed would allow one with an S to run and exper-
iment with it. The testbed provides an E (likely simulated, and also perhaps
paremeterized) and defines the S - E boundary by the interface functions
and data structures through which S and E interact. The testbed should also
provide means for controlling multiple runs and for collecting measurements
on E and, perhaps, on S as well. Ideally a testbed also provides utilities for
analyzing the results (i.e., the measurements) across multiple runs.

A more general testbed facility would not have the E built in, but would
instead accept both the E and the S as inputs. That is, it defines a generic
interface between any E and any S compatible with that E. It would ac-
complish this by defining an interface between the testbed itself and S, and
between the testbed and E. These interfaces would allow the testbed to
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Agent Oriented Programming

Yoav Shoham
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1 Introduction

This is an abbreviated version of a manuscript that describes work we are
doing in the Artificial Agents group in the Robotics Lab. It touches on
issues that are subject of much current research in AI, issues that include
the relationship between a machine and its environment, and the notion
of agenthood. Many of the ideas here intersect and interact with ideas of
others. For the sake of continuity, however, I will delay placing this work in
the context of other work until the end.

The term 'agents' is used a lot these days. This is true in AI, but also
outside it, for example in connection with data bases and manufacturing au-
tomation. Although very popular, the term has been used in such diverse
ways that it has become almost meaningless without reference to a particu-
lar notion of agenthood. Some notions are primarily intuitive, others quite
formal. Some are very austere, defining an agent essentially as a Turing-
like machine, and others ascribe to agents sensory-motor, epistemic and even
natural language capabilities.

We propose viewing 'artificial agents' as formal versions of human agents,
possessing formal versions of knowledge and beliefs, desires and goals, capa-
bilities, and so on. The result is a computational framework which I will call
agent-oriented programming.

The name is not accidental, as AOP can be viewed as an extension of the
object-oriented programming (OOP) paradigm. I mean the latter in the spirit
of Hewitt's original Actors formalism, rather than in the more technologi-
cal sense in which it is used nowadays. Intuitively, whereas OOP proposes
viewing a computational system as made up of modules that are able to
communicate with one another and which have individual ways of handling



in-coming messages, AOP expands the picture by allowing the modules to
possess knowledge and beliefs about one another, to have goals and desires,
and other similar notions. A computation consists of these agents informing,
requesting, negotiating, competing and assisting one another.

This is the programming-paradigm perspective on AOP. An alternative
view of AOP is as a formal language. From this perspective it may be viewed
as a generalization of epistemic logics, which have been used a fair amount
in AI and distributed computation in recent years. These logics describe the
behavior of machines in terms of notions such as knowledge and belief. These
mentalistic-sounding notions are actually given very precise computational
meanings, and are used not only to prove properties of distributed systems,
but to design them as well. A typical rule in such a 'knowledge-based' system
is "if processor A does not know that processor B has received his message,
then processor A will not send another message." AOP expands these logics
by augmenting them with formal notions of goals, desires, capabilities, and
possibly others. A typical rule in the resulting framework would be "if agent
A knows that agent B intends to do something agent A does not want done, A
will request that B change his intention." In addition, temporal information
is included to anchor knowledge, desires and so on in particular points in
time.

Intentional terms such as knowledge, beliefs, goals and so on are used in
a curious sense in the formal AI community. On the one hand, the defini-
tions (e.g., of knowledge) come nowhere close to capturing the full linguistic
meanings. On the other hand, the intuitions about these formal notions do
indeed derive from the everyday, commonsense meanings of the words. What
is curious is that, despite the disparity, the everyday intuition has proven a
good guide to employing the formal notions, when done in moderation.

The rest of this document is organized as follows. We first provide mo-
tivation for the Agent-Oriented Programming paradigm by looking at three
futuristic applications. We then outline the research programme, including
a sketch of the progress we have made to date. We conclude with a brief
comparison with recent related research efforts.
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I

2 Agent-Oriented Programming in the year
199x

We present three futuristic scenarios. The first involves only human agents,
the second both humans and machines, and the third only robots.

2.1 Office automation

(omitted)

2.2 Manufacturing automation

Alfred and Brenda work at a car manufacturing plant. Alfred handles regular-
order cars, and Brenda handles special-order ones. The plant has a welding
robot, known affectionately as Calvin. The plant foreman is Dashiel. The
following scenario develops.

At 8:00 Alfred requests that Calvin promise to weld ten bodies for him
that day. Calvin agrees to do so. At 8:30 Alfred requests that Calvin accept
the first body, Alfred agrees, and the first body arrives. Calvin starts weld-
ing it and promises to let Calvin know when it is ready for the next body.
At 8:45 Brenda requests that Calvin work on a special-order car which is
needed urgently. Calvin responds that it can't right then, but that it will
when it finishes its current job, at approximately 9:00. At 9:05 Calvin com-
pletes welding Alfred's first car, ships it out, and offers Brenda to weld her
car. Brenda ships it the car, and Calvin starts the welding. At 9:15 Alfred
enquires why Calvin is not yet ready for his (Alfred's) next car. Calvin tells
him why, and also that it (Calvin) expects to be ready by about 10:00. At
10:05 Calvin completes the welding of Brenda's car, and ships it out. Brenda
requests that he reaccept it and do some painting, but Calvin refuses, ex-
plaining that it doesn't do painting. It then offers to weld another car for
Alfred. Calvin then proceeds to weld Alfred's cars, until 12:15 at which time
Brenda requests that Calvin commit to welding four more special-order cars
that day. Calvin replies that it cannot, since there are still six more cars it
promised to weld for Alfred that day. Brenda requests from Alfred that he
allow Calvin to work on her cars first, finishing as many of Alfred's cars as it
can afterwards. Alfred refuses. Brenda requests that Dashiel order Calvin to
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accept her Important Request and cancel its commitment to Alfred. Dashiel
orders Calvin to weld two of Brenda's cars, and then as many of Alfred's as
time allows.

2.3 Gofer robots

It is 1995, and the new Stanford Information Sciences building has been
completed. In addition to its human inhabitants, the building is populated
by about 100 Gofer robots. The role of the Gofers is to carry documents to
and from the copying machine, fetch coffee and sodas, and generally make
themselves useful.'

At a junction of corridors two Gofers, G-Ed and G-John, engage in the
following exchange.

G-Ed: I intend to turn into the north corridor.

G-John: So do I; you may go first. Where are you headed?

G-Ed: The copying machine.

G-John: In that case, will you xerox this document for me and drop it off
at John's office?

G-Ed: Ok.

G-Ed proceeds down the north corridor, and G-John scuttles back down the
west corridor. Half way down the corridor it runs into G-Nils.

G-Nils: Where are you headed?

G-John: To John's office.

G-Nils: Watch out, there's a traffic jam in corridor #25; G-Terry and G-
Mike collided, and it's not a pretty sight.

'The presence of the Gofers is an actual plan; the Gofer project in out Robotics Lab is
currently experimenting with three platforms. The completion of the building by the said
date, however, is pure speculation.
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3 Research programme

The preceding scenarios made reference to mentalistic notions such as knowl-
edge, belief, desires, goals and capabilities. The goal (...) of our research is
to make engineering sense out of these abstract concepts. The result is to be
a programming paradigm which we call Agent-Oriented Programming. This
framework is to have three primary components.

* A restricted formal language of intentional constructs such as beliefs
and goals, with clear syntax and semantics. This language will be used
to define agents.

" A programming language in which to program these agents, with prim-
itive commands such as request and offer. The semantics of the pro-
gramming language will be derived from the semantics of agents.

" A compiler from the agent-level language to a machine-level language.

In the following subsections we expand on these components a little bit.

3.1 Language definition

We need to first define a precise language for talking directly about knowl-
edge, beliefs, goals, and similar properties of agents. We have already begun
work in this direction; here are a few examples of statements in the language
of agents.

* The fact that at 9:00 Bob has a goal to purchase X-terminals at 10:00
is expressed by

(9: 00, GBob(10: 00, purchase(Bob, Xterminals)))

" The fact that at 9:15 Alfred believes that at that time Calvin has the
goal of welding car #14 at 10:00 is expressed by

(9 : 15, BAlfed( 9 : 15, GcaIi,, (10 : 00, weld(Calvin, car#14))))
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e The fact that on Monday G-John knows that on Thursday he will know
whether on Wednesday G-Ed copied document #114 on Wednesday is
expressed by (Monday, KAGJohn (Thursday,

(KG,,h,(Wednesday, copy(G - Ed, document# 114)) V
KGjoh,( Wednesday, -copy(G- Ed, document# 114)))))

To define the language precisely its syntax and semantics must be fixed.
Appendix A provides a few more details of the syntax, in its present stage
of development. A fuller description of both syntax and semantics can be
found in an article authored by Becky Thomas, Sarit Kraus and myself.

3.2 A programming language

The language discussed above will define the concept of artificial agents. The
second step will be a development of a language in which to program these
agents. Basic operations in this language will include:

" execute a primitive action;

" inform;

* request;

" consent;

* offer;

" promise;

" persuade;

" negotiate

Both preconditions and effects of these actions will refer to goals, beliefs and
so on. For example, in its simplest version, a precondition of informing is
that the speaker knows the information, and post conditions are that the
hearer knows it, that the speaker knows that the hearer knows, and so on.

This illustrates also the extent to which we will deviate from common
sense. The act of informing among human beings is very complex, and in-
volves many considerations, such as the speaker believing that the hearer
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does not already know the information, the fallibility of human knowledge,
and so on. We will incorporate into the formal language just as many of
those features as are both needed and amenable to formalization.

As is well known from speech-act theory, the interpretation of commu-
nicative acts can be complex. For example, an apparent informing act may
actually serve as a request ('that sandwich looks good'). We may wish to
incorporate some of these properties into the programming language.

As of now we have no report on the design and implementation of this
programming language.

3.3 Compiling into the language of machines

We have said that we intend to view machines as well as agents. If we wish
to do that, however, we face the problem of bridging the gap between the
AOP level and the agentless language of machines. Consider for example the
task of coordinating a welding robot with other activities in the plant. We
may find it convenient to speak as if the robot has "knowledge" of the cars
waiting to be welded and a "goal" to weld one of them, but ultimately we
need to connect to the sensors on board the welder and to its controllers.

For that we need to "compile" statements in the AOP to the machine
language, so that, for example, the high-level command "offer to weld the
next car" will be translated to the appropriate control commands. Of course,
each machine will have highly idiosyncratic sensors and controls, and so the
target language of our compiler will have to be at a slightly higher level than
the individual machine. We model machines more abstractly as consisting
of an internal state, input and output, and a transition function with an
associated time delay. These machines can be aggregated, yielding quite
complex behaviors. The compiler will take AOP expressions and commands,
and translate them into input to those machines.

We propose to use the machine language outlined in our report with
Barbara Hayes-Roth as our target language.

We have not yet tackled the compilation process head on. The closest
we have gotten to doing so is to look at a particular aspect of the transition
from high-level commands to low-level controls, namely its tolerance to small
perturbations: the high level command can be reduced to more than one low
level command. This comes up whether the high-level command includes
intentional operators or not. For example, it is unreasonable to interpret the
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gross command 'roll down the middle of the corridor' as specifying a pre-
cise geometrical trajectory. Instead, we propose viewing it as a protogram.
A protogram specifies the prototypical behavior, an ideal that is deviated
from due to the interaction with other protograms (such as the 'avoid obsta-
cles' protogram). Our current thinking about protograms is described in an
appendix in the full manuscript.

4 Brief comparison with other work

Much work has been directed a t defining agents, machines and environments.
Some of the work is similar to ours. In fact, some aspects of this research
programme were inspired by this previous work. Other work is quite dif-
ferent, even though it uses similar terminology. Here I briefly mention the
relationship I see to several projects in and around Stanford, given my limited
knowledge of them.

" McCarthy's ELEPHANT language. Appears similar with respect to
the vision of a programming language, its primitive commands, and
the general wish to endow them with formal semantics.

" Winograd's project on coordination. I don't know enough to really say
yet; my initial perception is that our intuitions overlap significantly, but
that Winograd does not intend to rest his system on formal foundations.

* Nilsson's work on Action Nets. Similar in the desire to incorporate in-
tentional notions into the machine model (actually, talks only of beliefs
and goals). Significantly different machine model, and very different
way of incorporating the intentional notions. Similar emphasis on the
real-time nature of the machine.

" Genesereth's work on agents. Genesereth's model of machines inspired
the one defined here, although some differences exist. In his work these
machines are called agents, whereas we associate the term with the
intentional level.

" Barbara Hayes-Roth's work on agents. Is similar in its general goal to
combine high-level, cognitive-like behavior with real-world input and
output. Emphasizes less the theoretical framework and the inter-agent
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aspects, and more the experimental methodology and structure of the
individual agent.

* Rosenschein and Kaelbling's work on situated automata. Probably
the strongest influence on our work. Differences: different intensional
languages (they have no time and only the K operator, which makes
reasoning at the intentional level less interesting), and also a slightly
different machine-level language (no real-valued delays, as far as I can
tell).

* Work, mostly at SRI, on belief, desire and intention (by Cohen, Levesque,
Pollack, Konolige, Moore and others). Similar in motivation to ours as
far as the semantics of agents goes. Cohen and Levesque's definition of
goals is similar to (and preceded) ours, though we find that our explicit
temporal framework is easier to use than the dynamic-logical language
they adopt.

These are only a few of the related projects. There are others, both
around Stanford and farther away. Rumor has it that some work is happening
even in Massachusetts. A more detailed comparison will be good.

A A sketch of the agents language

Our language takes the notion of time as basic. Our most basic well-formed
formulas (wffs) have the form

(t,p

where t is a time point and p is a proposition. This means that proposition
p is true at time t.

If Wp and ¢ are wffs, then so are

Sq0 A 4, meaning varphi and 4'

* -,W, meaning not p

* Vt W (where t is a variable standing for a time point), meaning that V
is true at all times t.
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We define p V V to mean -'(-p A -'0); that is, 'p or k, and 'p -- g/, to
mean - p V 04; that is, 'p implies 0.

Now we must introduce our modal operators B, D, and G; these will
represent belief, desire, and goals. If V is a wff in our language, then so are

" (t, BWp) (where t is a constant or variable denoting a time point), mean-
ing that at time t, 'p is believed

e (t, Dp) (where t is a constant or variable denoting a time point), mean-
ing that at time t, 'p is desired

" (t, GW) (where t is a constant or variable denoting a time point), mean-
ing that at time t, 'p is a goal

Now we need to describe some of the characteristics we expect these
notions to have; for example, if we belive 'p is true (at time t) and believe
that 'p --* is true (at the same time t) then we believe that ik is true at time
t as well. This keeps our set of beliefs internally consistent. Some properties
we want to have:

B2 Vt ((t, B') A (t, B('p-- k)) -- (t, BO)).

B4 Vt ((t,Bp) -- (t,B(t,Bp))).

B5 Vt ((t, -B'p) --+ (t, B(t, -B'p))).

DI VtI Vt 2 -(t,D(t2,false)).

G1 Vt ((t, Gp) A (t, G(wp 0 4)) -+ (t, Go)).

G2 Vt ((t, Gp) A (t,Gk) -, (t, G(W A 4))).

G3 Vt 1 Vt 2 -(tiG(t 2 , false)).

So our agents' beliefs are internally consistent and don't include falsity;
agents are aware of their own beliefs (according to B4 and B5; agents don't
desire falsity or have it for a goal; an agent's set of goals is closed under
implication and conjunction.
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How do these notions interact? Whenever an agent has a goal, surely the
agent also believes that it has that goal:

Vt ( (t, GV ) = (t, B (t, Gq of)

Intuitively, the agent must have consciously committed to act so as to
bring about cp; otherwise cp would only be a desire. (****) Similarly, if an
agent thinks that Wp is impossible to achieve, then the agent won't choose (P
as a goal, because that would mean wasting time trying to achieve something
that's impossible:

Vt -((t, GV) A (t, B-yV))

When does an agent form a goal? Presumably, only when achieving that
goal will help the agent satisfy some desire the agent already has. So every
goal either is also a desire, or will serve to help achieve that desire:

Vt ((t, Gp) - 3V (t, Do A B('p -- 0)))

* This provides a necessary condition for having a goal; we might also specify
a sufficient condition. For example, we might say that any time an agent has
a desire and doesn't believe that desire is impossible to achieve, the agent
must adopt that desire as a goal.

Vt (((t, Dv) A (t, -,B-,p)) - ((t, GW) V (t, G-p)))
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1. Real-Time Performance in Intelligent Agents

Imagine an "errand robot" driving an automobile on its way to some
destination. Noticing a yellow traffic light at the next intersection in its
path, the robot infers from its current speed, distance to the light, and
conservative traffic-light policy that it should stop. The robot
immediately releases the accelerator and, after a few seconds, applies
the brake to bring its vehicle to a gradual stop just before entering the
intersection. The robot's behavior is satisfactory not simply because it
produces the correct result, but because it does so at the right time. If,
for example, the robot stopped very much before or after reaching the
intersection, its behavior would be unsatisfactory and potentially
catastrophic.

The errand robot illustrates a class of computer systems, which we
call "intelligent agents," whose tasks require both knowledge-based
reasoning and interaction with dynamic entities in the environment--such
as human beings, physical processes, other computer systems, or complex
configurations of such entities. Tasks requiring an intelligent agent occur
in diverse domains, such as: power plant monitoring (Touchton88), sonar
signal interpretation (Nii82), process control (Allard87, d'Ambrosio87,
Fehling86, LeClair87, Moore84, Pardee87,89), experiment monitoring
(O'Neill89), student tutoring (Murray89), aircraft pilot advising, and
intensive care patient monitoring (Fagan80, Hayes-Roth89a).

To perform such tasks, an agent must possess capabilities for:
perception--acquiring and interpreting sensed data to obtain knowledge of
external entities; cognition--knowledge-based reasoning to assess
situations, solve problems, and determine actions; and action--actuating
effectors to execute intended actions and influence external entities. In
the example above, the errand robot perceives signals from which it infers
that the traffic light is yellow. It reasons with this perception, its traffic
light policies, and other perceptions and knowledge to determine that
gradually coming to a stop at the intersection is the appropriate result
and that releasing the accelerator and applying the brake are the
appropriate actions. It performs those actions in the appropriate temporal
organization, thereby achieving the intended result.

Because external entities have their own temporal dynamics,
interacting with them imposes aperiodic hard and soft real-time
constraints on the agent's behavior. Following Baker89, we use the term
"aperiodic" to describe tasks having irregular arrival times. Following
Faulk88 and Stankovic88b, we use the terms "hard" and "soft" to



distinguish between real-time constraints whose violation precludes a
successful result versus those whose violation merely degrades the
utility of the result. For example, a vehicle that happens to stop in front
of the errand robot is an aperiodic event with a hard deadline. The robot
must stop its own vehicle in time to avoid colliding with the other
vehicle. When that is not possible, the robot should consider alternative
actions, such as maneuvering around the stopped vehicle.

In a complex environment, an agent's opportunities for perception,
action, and cognition typically exceed its computational resources. For
example, in the scenario above, the errand robot has opportunities to
perceive the physical features and occupants of other automobiles on the
road and the buildings and landscape along the sides of the road. It might
reason about any of these perceptions or other facts in its knowledge
base. It might perform a variety of actions more or less related to driving
its automobile. Fortunately, the robot largely ignores most of these
opportunities to focus on matters related to the traffic light. Otherwise,
it might fail to perform the necessary perception, reasoning, and actions
in time to stop its automobile at the right time. On the other hand, the
errand robot cannot totally ignore incidental information without risking
the consequences of rare catastrophic events. For example, the robot
should notice a child running into its path. In some cases, the robot might
benefit from noticing information that is not immediately useful. For
example, it might notice a sign posting business hours on a shop window
and use that information when planning a subsequent day's errands.

Because an intelligent agent is almost always in a state of
perceptual, cognitive, and action overload, it generally cannot perform all
potential operations in a timely fashion. While faster hardware or
software optimization may solve this problem for selected application
systems, they will not solve the general problem of limited resources or
obviate its concomitant resource-allocation task (Stankovic88a). For an
agent of any speed, we can define tasks whose computational
requirements exceed its resources. Moreover, we seek more from an
intelligent agent than satisfactory performance of a predetermined task
for which it has been optimized. Rather, we seek adaptivity of the agent to
produce satisfactory performance of a range of tasks varying in required
functionality and available knowledge as well as real-time constraints.
For example, the errand robot should be able to respond appropriately to
traffic signals and other usual and unusual events in a broad range of
driving situations. It should drive competently on freeways as well as on
surface streets. If it unexpectedly finds itself on surface streets where
others are driving at freeway speeds (or, more likely, vice versa), it



should adapt its own behavior accordingly. The agent might have other
sorts of skills, such as planning its own errands under high-level goals
and constraints or learning new routes from experience taking necessary
detours. Other things being equal, the broader the range of tasks an agent
can handle and the wider the range of circumstances to which it can adapt,
the more intelligent it is.

For these reasons, we view real-time performance as a problem in
intelligent control. An agent must use knowledge of its goals, constraints,
resources, and environment to determine which of its many potential
operations to perform at each point in time. For example, the errand robot
might decide to give high priority to perceiving and reasoning about
traffic lights so that it can always stop in time for yellow or red lights.
When the operations required to achieve an agent's current goals under its
specified constraints exceed its computational resources, it may have to
modify them as well. For example, if the errand robot finds itself
unexpectedly late to an important destination, it might decide to relax its
conservative traffic-light policy and drive through selected yellow lights.
Because it is situated in a dynamic environment and faces a continuing
stream of events, an agent must make a continuing series of control
decisions so as to meet demands and exploit opportunities for action as
they occur. For example, if the errand robot is making a planned gradual
stop at a traffic light and a child runs into its path, the robot should
perceive the child and stop immediately. In general, an agent should use
intelligent control to produce the best results it can under real-time
constraints and other resource (e.g., information, knowledge) constraints.

Our conception of real-time performance in intelligent agents is
qualitatively different from conceptions of real-time performance in
other sorts of computer systems (Baker89, Brinkley89, Faulk88, Henn89,
Lauber89, Marsh86). In particular, we do not view real-time performance
as a guaranteed, universal, or provable property of the agent. Nor do we
seek real-time performance through effective engineering of the agent. We
feel that these constructs are surely premature and possibly unrealistic
for the versatile and highly adaptive agents we envision. Rather, we view
real-time performance as one of an agent's several objectives, which it
will achieve to a greater or lesser degree as the result of interactions
between the environment it encounters, the resources available to it, and
the decisions it makes. In many cases, the agent will achieve real-time
performance only at the expense of quality of result or by compromising
response quality or real-time constraints on other tasks. Ironically, as the
agent's competence expands, so will its need to make such compromises.
From this perspective, real-time performance in intelligent. agents



depends critically upon an underlying architecture that enables agents to

make and apply the necessary kinds of control decisions.

2. Real-Time Requirements and Heuristics

An intelligent agent's real-time requirements can be summarized very
simply: To maximize the number of important goals for which it achieves
an acceptable result at an acceptable time. This section presents
heuristics for meeting these requirements. We do not mean to suggest that
these heuristics provide the optimal approach to meeting the
requirements or even a valid approach. We suggest only that 'hey
represent a promising approach, which we currently are investigating.

1. Asynchrony. For a given objective, an agent can't count on all
necessary perceptual information being available at the start of its
associated reasoning or on its reasoning being completed prior to
execution of its first associated action. Relevant information may arrive
at any time during reasoning and relevant reasoning may continue beyond
initiation of early actions. In addition, with multiple objectives, the agent
may have to interleave unrelated perception, reasoning, and action
operations. Finally, the agent must always be prepared to interrupt its
ongoing acitivites to handle unpredictable emergencies or simply to
switch its attention to more important matters than those currently under
consideration. For these reasons, an intelligent agent must perceive,
reason, and act asynchronously, without these activities interrupting or
directly interfering with one another or with communications among them.
For example, in the scenario above, the errand robot's execution of actions
planned to produce a gradual stop do not impede its immediate perception
of a child running unexpectedly into its path or its consequent actions to
avoid hitting the child.

2. Timeliness. Because an agent interacts with independent dynamic
entities, its sensory information is perishable, the utility of its reasoning
operations degrades with time, and the efficacy of its actions depends
upon synchronization with fleeting external events. Therefore, the agent
must perceive present or recent sensed events, perform present or recent
reasoning operations, and execute currently intended actions, regardless
of how many earlier unexploited opportunities have occurred. The agent
should not fall behind real time to handle a backlog of inputs in any of
these categories and it should not operate on seriously out of date inputs-
-unless it has explicitly decided to do so. For example, while approaching
an intersection, the errand robot perceives information relevant to its
reasoning about actions to be taken at the intersection. Having passed



through the intersection, the robot ordinarily does not dwell upon
unprocessed perceptual events available at the intersection, inferences it
might have drawn, or alternative actions it might have taken. Instead, it
performs operations related to its current post-intersection situation.

3. Selectivity. Except for rare occasions, opportunities for
perception, cognition, and action vastly exceed the agent's resources for
performing those operations. Even when the rate of such opportunities is
well within the agent's capacity, it may be unproductive or even harmful
for the agent to pursue many of them. Therefore, the agent must
selectively perceive information and perform reasoning operations that
enable it to perform the most useful actions. For example, although the
errand robot could respond to great quantities of incidental information
regarding the other vehicles on the road, their drivers' intentions, or the
passing landscape, it ignores most of these opportunities in favor of
activities related to its current driving task.

4. Coherence. Most non-trivial tasks require coordinated perception,
cognition, and action. In the simplest case, perceived information must be
integrated with knowledge and reasoning to determine actions that lead to
objectives. In more complex, but no less typical cases, achievement of
objectives depends upon a strategic sequence of such activities
coordinated over a period of time. To perform such tasks, the agent must
develop strategic plans and use them in a "top-down" fashion to direct its
perception, cognition, and action toward the desired objectives. For
example, given its general plan for travelling about the city and
dispatching errands, the errand robot focuses on dynamically refining its
intended route and obeying traffic laws as it follows that route.

5. Flexibility. A dynamic environment entails considerable uncertainty
in the situations an agent will face and the details of those situations as
they unfold. In addition to rare catastrophic events, many unanticipated
events simply require minor modifications of the agent's behavior or even
offer new opportunities for the agent to improve the overall utility of its
performance. In order to adapt to actual evolving situations, the agent
must monitor the environment (and its own inferences as well) for
important unanticipated events and respond flexibly to those events in a
"bottom-up" fashion to modify its objectives or its strategic plans for
achieving them. For example, to avoid traffic delays caused by an accident,
the errand robot should modify its planned route and take a reasonable
detour. If the robot calculates that the detour also entails excessive
delay, it might eliminate certain errands from its plan in order to insure
completion of critical errands in the time available.



6. Responsivity. Situations vary in urgency--that is, the rapidity with
which a response is required in order to produce a satisfactory result.
Some situations impose "hard" deadlines; a logically correct response that
occurs after the deadline is as useless as a logically incorrect response.
Other situations impose "soft" deadlines; the utility of a logically correct
response declines monotonically, but not precipitously, with delay after
deadline. Depending upon the complexity of its environment, the agent may
incur multiple aperiodic tasks imposing various hard and soft deadlines
within a local time interval. Often it must compromise the correctness or
timeliness of its performance of some of these tasks in order to satisfy
the requirements of other more important tasks. However in general, other
things being equal, the more urgent a situation is, the more quickly the
agent should perceive the relevant information, perform the necessary
reasoning, and execute the appropriate actions. Thus, the errand robot
should perceive a child in its path and stop its vehicle as quickly as
possible, while a somewhat longer latency is tolerable for perceiving and
stopping at a yellow traffic light.

7. Robustness. Despite its best efforts to use its limited resources
wisely, an agent will encounter situations that strain or exceed its
capacity: too many important perceptions, reasoning tasks, and actions.
Regardless of the degree of overload, the agent must continue to function.
It cannot arbitrarily ignore pending tasks or fail to complete tasks it has
decided to undertake. Instead, the agent must adapt to high resource-
stressing situations by ensuring graceful degradation of its performance.
It must reduce the demands on its resources by eliminating or revising the
least important of its objectives and refocusing its resources where they
are needed most. It must compromise the quality of its performance to
provide satisfactory results for the most important objectives. For
example, when driving near a school or playgound, the errand robot may
compromise its responsivity to traffic lights so that it can monitor more
vigilantly for children running into its path.

3. Research Goals

The primary goal of our research is to develop a general architecture for
intelligent agents--systems that perform a variety of knowledge-based
reasoning tasks while functioning autonomously in natural environments.
By definition, an intelligent agent must integrate capabilities for
performing the following tasks: interpretation of information sensed from
a complex, dynamic environment; detection and diagnosis of exceptional
conditions; reactive response to urgent conditions; prediction of



important future conditions; planning and execution of a course of actions
to influence external conditions; explanation of the physical phenomena
underlying observed or predicted or planned conditions; consultation with
human beings or other computer systems; and learning to improve
performance based on experience. In performing these several tasks, the
agent must allocate limited computational and other resources (e.g.,
sensors and effectors) dynamically, to achieve its most important
objectives in a timely fashion. In particular, they must achieve at least
the real-time performance objectives characterized above.

4. Architecture

In previous work, we developed a blackboard architecture that
integrates task-level reasoning with reflective processes, such as
dynamic planning and control of reasoning, strategic explanation, and
strategy learning. Implemented in the BB1 system, this architecture has
been used in a number of projects at Stanford and licensed widely outside
of Stanford. Our current work is directed toward extending the
architecture in four areas: perception/action processes to mediate
asynchronous interactions with a complex environment, a satisficing
control regime to support guaranteed response times, and conceptual
graph representation to provide a declarative representation for all of an
IRTPS's knowledge, beliefs, intentions, etc., with a temporally organized
representation of dynamic information. The architecture is designed to
requirements for dynamic real-time control. Current research activities
are intended to evaluate its achievement of those design goals both
analytically and empirically. The architectural design and implementation
and related research are discussed in several articles in the attached
references, especially Hayes-Roth85, 87b, 88a, 89c.

We are developing generic models of knowledge and reasoning for
prototypical tasks performed by an intelligent agent. Examples are: focus
of attention, incremental modeling of dynamic external phenomena;
reactive detection, diagnosis, and correction of exceptional external
conditions; model-based diagnosis, prediction, and explanation of external
conditions; time-constrained planning of longer-term courses of action.
Our approach represents explicit knowledge of the operations and
strategies involved in each of these tasks within the architecture
discussed above. Some of this work is discussed in (Boureau89,
He-.iett89b, Hayes-Roth89b, Washington89).

Much of our past work concerns coordination of diverse knowledge
sources and reasoning methods invoked by run-time conditions (Garvey87,



Hayes-Roth85, Johnson87) to achieve efficient and effective performance
of complex tasks. Current research expands these concerns to performance
of multiple interacting tasks under real-time and other resource
constraints. In particular, we have developed an approach to integrating
reactive response to urgent events in the context of more deliberate
situation assessment and planning for stable or slowly evolving
conditions.

5. Experimental Applications

Because our long-term research goal is to develop a general
architecture for adaptive intelligent systems, much of our r .7 earch
involves experimental development of application systems in various
several domains. Each new domain tests the efficacy and generality of the
current architecture and presents new requirements to be addressed in
subsequent versions of the architecture. We currently are working on
several intelligent real-time monitoring applications, described briefly
below.

Guardian, being developed in collaboration with Dr. Adam Seiver, of the
Palo Alto Veterans Administration Medical Center, monitors ventilator-
supported patients and consults with physicians and nurses in a surgical
intensive care unit. Demonstration 4, which will be completed this Fall,
monitors about twenty automatically sensed variables (e.g., pressures,
temperature) and a few irregularly sensed variables (e.g., lab results). It
performs the several tasks mentioned above using several kinds of
knowledge: heuristic knowledge related to common respiratory problems;
structure/function knowledge of the respiratory, circulatory, metabolic,
and mechanical ventilator systems; and structure/function knowledge of
generic flow, diffusion, and metabolic systems. Guardian currently
monitors a simulated patient-ventilator-hospital system. However,
beginning this winter, we expect to have on-line access to patient data
monitors at the Palo Alto VAMC, so that we can begin experiments
involving real-time monitoring of actual patients. A paper describing
Guardian is in preparation.

A second system, being developed in collaboration with Professor
James Harris of Stanford's Electrical Engineering Department, is intended
to control the growth of gallium arsenide (GaAs) crystals by molecular
beam epitaxy (MBE). A simulation of the MBE machine and crystal growth
process have been developed and a preliminary process planner is near
completion.



We currently are exploring two other domains: intelligent plant
monitoring for preventive maintenance, in collaboration with Professors
Raymond Levitt and Paul Teicholz of Stanford's Civil Engineering
Department; and intelligent control of micro-factory operations for semi-
conductor fabrication, in collaboration with Professor Nils Nilsson of
Stanford's Computer Science Department and with Professors Krishna
Saraswat, Gene Franklin, and Robert Dutton of Electrical Engineering.

6. Related Work

In this section, we briefly review other research related to adaptive
intelligent systems. This is by no means a complete survey, but gives an
indication of some of the most prominent lines of relevant research and
their treatment of the requirements discussed above.

A number of researchers have extended the classical planning model
(Fikes7l, Sacerdoti75) to permit interleaving of planning and execution,
either to build a plan incrementally or to modify the plan in response to
unanticipated conditions (Broverman87, Corkil182, Durfee86, Georgeff87,
Hayes-Roth85, Lesser88) or to employ more knowledge intensive and
computationally tractable methods for generating partial plans, including
for example: instantiating goal-oriented action schemas (Friedland79);
integrating top-down and bottom-up planning methods (Hayes-Roth79a,b,
Johnson87), transferring prior successful plans to new situations
(Hammond86); or successively applying constraints among potential
actions (Stefik8l)). These approaches are quite compatible with our work.

Several researchers have studied methods for controlling trade-offs
in the amount of time spent solving a problem or performing a task versus
the quality of the result, (Dean88, Horvitz87, Lesser88). These
approaches, which Dean calls "anytime algorithms" and Lesser calls
"approximate reasoning," are quite compatible with and appear in several
aspects of the proposed architecture, notably in its satisficing control
regime and in its accommodation of alternative reasoning strategies,
including approximate or anytime strategies.

By contrast, in an effort to avoid the computational cost of control
reasoning and thereby create real-time responsivity, a number of
researchers have turned their attention to the theory, design, and
implementation of "reactive agents" (Agre87, Andersson88, Brooks85,
Fagan84, Firby87, Kaelbling88, Nilsson89, Rosenschein86, Schoppers87,
Suchman87). Basically, reactive agents store large numbers of perception-



action rules in a computationally efficient form and execute actions
invoked by environmental conditions on each iteration of a perceive-act
cycle. Thus, they are formally similar to control theoretic methods
(Bollinger88, Hale73), where traversal of symbolic networks replaces
computation of numerical models. We consider reactivity an essential
behavior in some circumstances and our architecture supports it, but we
do not consider it a promising foundational architectural principle, first
because enumerating all possible perception-action contingencies and
encoding them in a computationally tractable form is infeasible for
challenging task domains and second because many task domains
intrinsically require maintenance of internal state.

For several decades now, robotics researchers have aimed to build
"task-level" robot systems (Cox89, Ernst6l, Kathib86, Lozano-Perez89).
Unlike robots programmed to perform specific mechanical tasks, task-
level robots are intended to accept high-level goals and then determine
and perform whatever behaviors are necessary to achieve the goals. They
are intended to operate under a variety of incidental contextual
conditions, including low-frequency exceptional conditions related to
hardward, software, or environmental state. Significant applications of
this work include efforts to build autonomous vehicles (Burks89,
Crowley89, Goto89, McTamaney89). The robotics work is similar in spirit
to the present approach--integrating perception, action, and cognition to
achieve goals in a real-time task environment--differing primarily in
emphasis on perceptual-motor rather than cognitive functions. The
robotics research traditionally has focused on challenging perceptual-
motor tasks, but has begun to incorporate more cognitive activities, such
as goal determination, planning, exception handling, and learning (Bares89,
Barhen89, Rao89, Weisbin89). Conversely, our work grows out of earlier
work emphasizing reasoning and problem solving, with new emphases on
perceiving and acting in a real-time environment.

Finally, there has been interesting theoretical work aimed at a formal
characterization of agents (e.g., Genesereth89). This work tends to
encompass an extremely broad spectrum of computational entities.
However, recent work by Shoham (described in his paper for this
workshop) focuses on agents possessing formal versions of knowledge,
beliefs, desires, goals, etc., bringing it closer in spirit to the kinds of
intelligent agents discussed in this paper.

Hayes-Roth, B. Architectural foundations for real-time performance in
intelligent agents. Journal of Real-Time Systems, accepted for 1990
publication pending revision.
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